

ANDHRA PRADESH STATE COUNCIL OF HIGHER EDUCATION

(A Statutory body of the Government of Andhra Pradesh)

3rd,4th and 5th floors, Neeladri Towers, Sri Ram Nagar,6th Battalion Road, Atmakur(V), Mangalagiri(M), Guntur-522 503, Andhra Pradesh **Web**: www.apsche.org **Email**: acapsche@gmail.com

REVISED SYLLABUS OF B.Sc. PHYSICS (FOR MATHEMATICS COMBINATIONS) UNDER CBCS FRAMEWORK WITH EFFECT FROM 2020-2021

PROGRAMME: FOUR-YEAR UG HONOURS PROGRAMME

Physics for Mathematics Combinations

(With Learning Outcomes, Unit-wise Syllabus, References, Co-curricular Activities & Model Q.P.)

For Fifteen Courses of 1, 2, 3 & 4 Semesters)

(To be Implemented from 2020-21 Academic Year)

AP STATE COUNCIL OF HIGHER EDUCATION

B.Sc. PHYSICSSYLLABUS UNDER CBCS

[For Mathematics combinations]

w.e.f. 2020-21 (Revised in May 2020)

First Semester

Course I: Mechanics, Waves and Oscillations Practical Course I (Lab-1)

Second Semester

Course II: Wave Optics Practical Course II (Lab-2)

Third Semester

Course III: Heat and Thermodynamics Practical Course III (Lab-3)

Fourth Semester

Course IV: Electricity, Magnetism and Electronics Practical Course IV (Lab-4)

Course V:Modern Physics Practical Course V (Lab-V)

B.Sc. PHYSICS COURSE STRUCTURE UNDER CBCS

Year	Semeste r	Cours e	Title of the Course	Marks	No.ofHrs /Week	No.of Credits
I	I	I	Mechanics, Waves and Oscillations	100	4	03
			Practical Course- I	50	2	02
	П	II	Wave Optics	100	4	03
			Practical Course – II	50	2	02
п	III	III	Heat and Thermodynamics	100	4	03
			Practical Course – III	50	2	02
	IV	IV	Electricity, Magnetism and Electronics	100	4	03
			Practical Course – IV	50	2	02
		V	Modern Physics	100	4	03
			Practical Course –V	50	2	02
	Т	otal No.	of Courses: 05 (Five)			

Practical Course V:Modern Physics

Work load: 30 hrs 2 hrs/week

On successful completion of this practical course, the student will be able to;

- Measure charge of an electron ande/m value of an electron by Thomson method.
- > Understand how the Planck's constant can be determined using Photocell and LEDs.
- > Study the absorption of α -rays and β -rays, Range of β -particles and the characteristics of GM counter
- Determine the Energy gap of a semiconductor using thermistor and junction diode.

Minimum of 6 experiments to be done and recorded

- 1. e/m of an electron by Thomson method.
- 2. Determination of Planck's Constant (photocell).
- 3. Verification of inverse square law of light using photovoltaic cell.
- 4. Determination of the Planck's constant using LEDs of at least 4 different colours.
- Determination of work function of material of filament of directly heated vacuum diode.
- 6. Study of absorption of α -rays.
- 7. Study of absorption of β -rays.
- 8. Determination of Range of β -particles.
- 9. Determination of M & H.
- 10. Analysis of powder X-ray diffraction pattern to determine properties of crystals.
- 11. Energy gap of a semiconductor using junction diode.
- 12. Energy gap of a semiconductor using thermistor
- 13. GM counter characteristics

RECOMMENDED CO-CURRICULAR ACTIVITIES:

MEASURABLE

- Assignments (in writing and doing forms on the aspects of syllabus content and outside the syllabus content. Shall be individual and challenging)
- Student seminars (on topics of the syllabus and related aspects (individual activity)

- Quiz (on topics where the content can be compiled by smaller aspects and data (Individuals or groups as teams))
- Field studies (individual observations and recordings as per syllabus content and related areas (Individual or team activity)
- Study projects (by very small groups of students on selected local real-time problems pertaining to syllabus or related areas. The individual participation and contribution of students shall be ensured (team activity)

GENERAL

- Group Discussion
- ❖ Visit to Research Stations/laboratories and related industries
- Others

RECOMMENDED ASSESSMENT METHODS

Some of the following suggested assessment methodologies could be adopted;

- ❖ The oral and written examinations (Scheduled and surprise tests),
- Practical assignments and laboratory reports,
- Efficient delivery using seminar presentations,
- Viva voce interviews.

Note:

- The duration of the examination for each theory course is 3.00 hrs.
 The duration of each practical examination is 3 hrs with 50 marks
- 2. Each course in theory is of 100 marks and practical course is of 50 marks.
 - ➤ Semester End University Examination in Theory Course: 75 marks [External evaluation]
 - ➤ Mid-Semester Examination in Theory Course at the college level: 25 marks [
 Internal evaluation]
- The University (external) examination for Theory and Practical shall be conducted at the end of each Semester.
- In each semester the evaluation in Practical courses shall be done by an external examiner appointed by the University.
 - There shall not be Internal valuation in any semester end practical examinations.
- The candidate shall prepare and submit at the time of practical examination a certified Record based on the practical course with a minimum of 6 experiments from each semester.
- 6. Numerical Problems must be solved at the end of every chapter of all Units.
- 7. Numerical problems, each having a weightage of 4 marks, should be asked in the Semester end University examinations.
- 8. The minimum passing marks in each theory course is 40 (External:30 and Internal:10)
 The minimum passing marks in each Practical/Lab course is 20.
- 9. The teaching work load per week for semesters I to IV is 4 hours for theory course and 2 hours for all laboratory (practical) courses.

- Visits to industry, national research laboratories, and scientific exhibitions should be encouraged.
- 11. The syllabus for Practical courses is same for both Mathematics and Non-Mathematics combinations.
- 12. The marks distribution for the Semester End practical examination is as follows:

(i)	Formula/Principle / Statement with explanation of symbols and	05
(ii)	Diagram/Circuit Diagram / Tabular Columns	10
(iii)	Setting up of the experiment and taking readings/Observations	10
(iv)	Calculations (explicitly shown) + Graph + Result with Units	10
(v)	Viva-voce	05
(vi)	Class Records (to be valued at the time of practical	10

Total Marks: 50

B.Sc. PHYSICS

[For Mathematics combinations]

w.e.f. 2020-21 (Revised in May 2020)

MODEL QUESTION PAPER COMMON FOR ALL FIVE THEORY COURSES

Time: 3 hrs Max marks: 75

SECTION-A

(Essay Type Questions) Marks : 5x10M = 50M

Answer All questions with internal choice from each Unit

1. Essay type question from Unit-I

Or

Essay type question from Unit-I

2. Essay type question from Unit-II

Or

Essay type question from Unit-II

3. Essay type question from Unit-III

Or

Essay type question from Unit-III

4. Essay type question from Unit-IV

Or

Essay type question from Unit-IV

5. Essay type question from Unit-V

Or

Essay type question from Unit-V

SECTION-B

Marks: 5x5M = 25M

(Short Answer Type Questions)

Answer any five out of the following ten questions

- 6. Short answer type question from Unit-I
- 7. Short answer type question from Unit-I
- 8. Short answer type question from Unit-II
- 9. Short answer type question from Unit-II
- 10. Short answer type question from Unit-III
- 11. Short answer type question from Unit-III
- 12. Short answer type question from Unit-IV
- 13. Short answer type question from Unit-IV
- 14. Short answer type question from Unit-V
- 15. Short answer type question from Unit-V

[Note: Question Paper setters are instructed to add Numerical Problems (each of 4 marks) with a maximum weightage of 16 marks either in Section-A or Section-B covering all the five units in the syllabus]
